

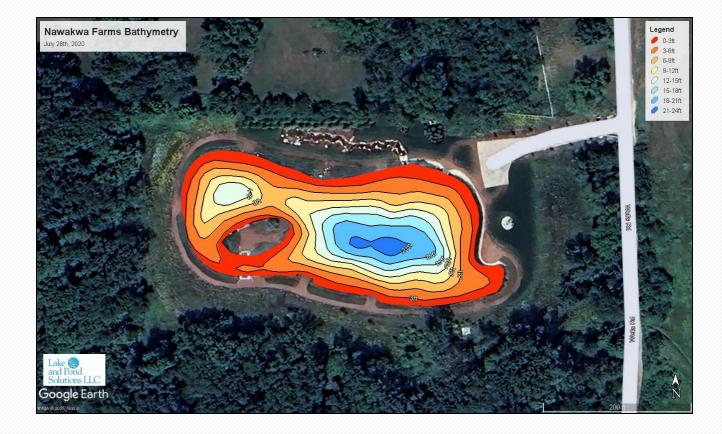
Oxygenation Saturation Technology (OST) 2-Year Case Study Review

Jeff Stelzer – Owner/Senior Biologist Lake and Pond Solutions LLC

Overview

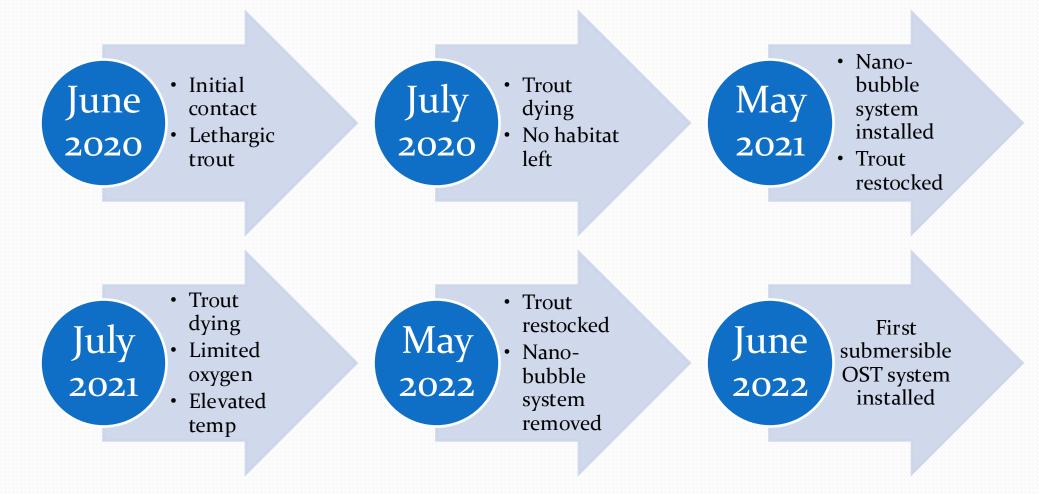
What is Oxygenation Saturation Technology? Case Study 1: New Trout Pond Case Study 2: Aged Stormwater Pond

These are two of the first three underwater OST systems installed worldwide


CASE STUDY 1: Trout Pond

Lake and Pond Solutions LLC

Lake & and Pond Solutions LLC


Background

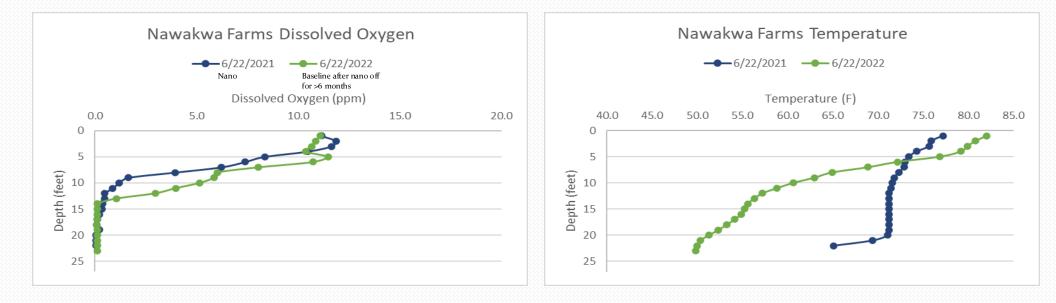
- Pond located in Walworth County, Wisconsin
- Clay-lined and built in 2019
- 1.47 acres with 23.2' max depth, 8.2' avg. depth
- 10 gpm well replaced by recirc stream and 65 gpm well in 2022

Project Timeline

Lake and Pond Solutions LLC

Project Details

- OST system installed in deep hole of east basin
- Suitable Trout Habitat
 - Temperature \leq 70° F
 - Dissolved oxygen (DO) \ge 7 ppm

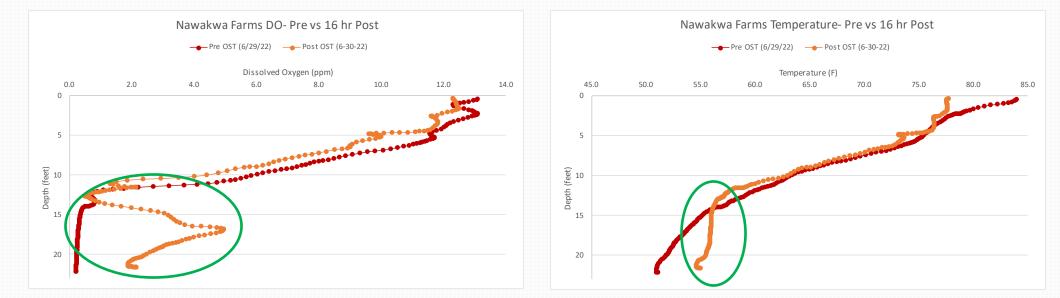


- Full profiles taken with YSI 550A meter or YSI DO200 meter
- Automated readings taken with series of probes at 23' 20', 17', and 14'
 - Measurements every 15 60 minutes
 - Connects to online dashboard

Pre-OST

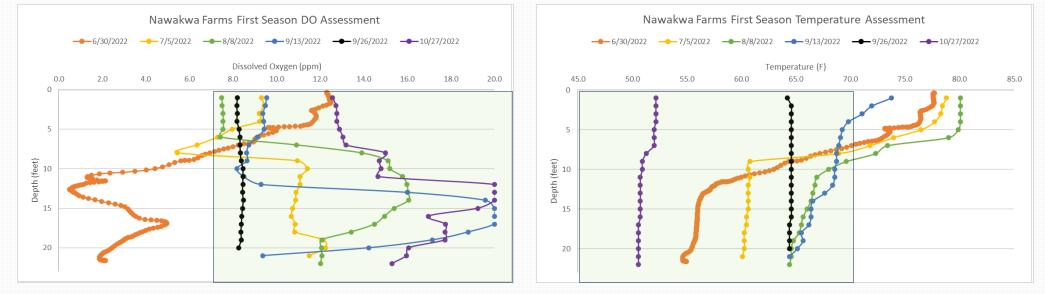
Lake and Pond Solutions LLC

• 6 weeks post nanobubble install (BLUE) vs pre-OST (GREEN)



- Higher avg DO pre-OST (5.18 ppm) vs nanobubble (3.51 ppm)
- 32° F temperature difference pre-OST (stratified) vs 12° F post nanobubble (mostly mixed)

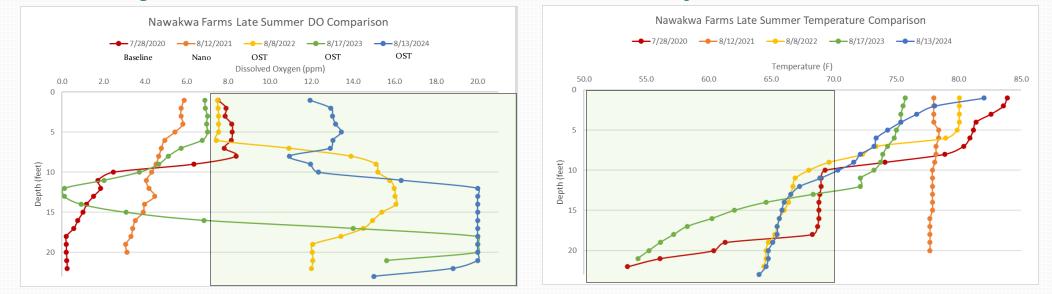
Initial OST Startup


• Pre-OST (RED) vs 16 hrs. post installation (ORANGE)

- 2.6 ppm avg DO increase in bottom 13' and 4.7 ppm increase at 17'
- Intentional mixing of bottom water but not entire water column

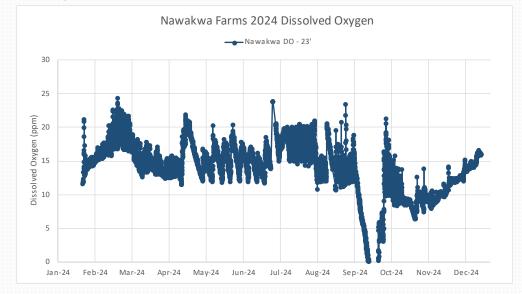
First Season Assessment (2022)

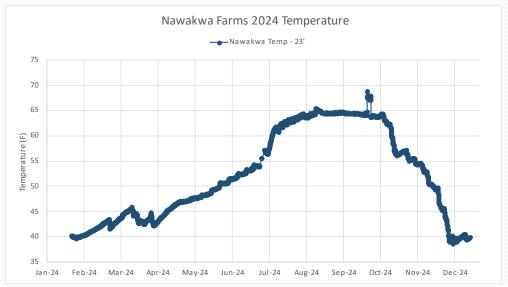
- DO > 10 ppm in bottom 13' after 6 days (YELLOW still stratified)
- Intended bottom mixing June August
- Natural turnover in late September with quick DO recovery
- DO \ge 8 ppm and temp \le 70° F in bottom 13' entire season


Full Project Late Summer Comparison

- DO and temp were unsuitable for trout in 2020 (RED) and 2021 (ORANGE)
 - Near complete fish loss observed both seasons
- 1st season OST (YELLOW) substantial increase in bottom DO and 15.4° F stratification
 - Intentional mixing in bottom portions

Full Project Late Summer Comparison




• 2nd season OST (GREEN) – good bottom DO and 21.4° F stratification

- No intentional mixing thus more localized DO (well water inputs too)
- 3rd season OST (BLUE) substantial bottom DO and 18.0° F stratification
 - Unintended mixing in bottom portions due to clogged headers

Complete 2024 Sensor Dataset

- DO remained in 10 20 ppm target range
 - System shutdown in September (header replacement)
 - 9 days for DO to drop to zero when system isn't running but only 5 days to increase to 10 ppm
- Temperature at 23' remained under 65.3° F all summer

Trout Habitat (DO \geq 7ppm and Temp \leq 70° F)

	MID-JUNE									
		Avg DO	Avg Temp	Depths w	Depths w/	Depths w/				
	Year	(15-23')	(15-23')	DO >7	Temp <70	Both				
Baseline	2020	0.16	54.8	6	17	1				
Nano	2021	0.14	70.2	6	2	0				
OST	2022	0.18*	52.3*	6*	22*	5*				
OST	2023	13.96	51.2	20	12	12				
OST	2024	13.54	55.0	15	12	7				

Avg June bottom DO 84x – 100x better than previous Avg June bottom temp closely matched unmixed conditions Depths with suitable oxygen increased 2.5x - 3.3x and suitable trout habitat increased

Trout Habitat (DO \geq 7ppm and Temp \leq 70° F)

	MID-AUGUST									
	Avg DO		Avg Temp	Depths w/	Depths w/	Depths w				
	Year	(15-23')	(15-23')	DO >7	Temp <70	Both				
Baseline	2020	0.40	63.2	8	13	0				
Nano	2021	3.39	77.7	0	0	0				
OST	2022	13.31	65.1	22	14	14				
OST	2023	14.22	57.6	9	11	7				
OST	2024	19.31	65.1	23	13	13				

Avg Aug bottom DO 4x - 48x better than previous Avg Aug bottom temp closely matched unmixed conditions No suitable habitat prior to OST but 7 – 14' after install

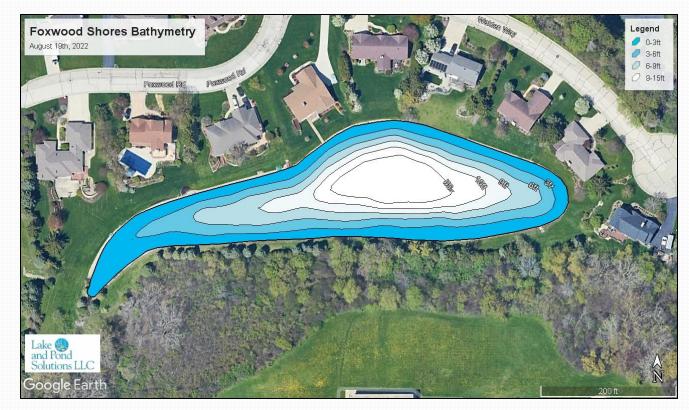
Project Conclusions

DO increases of nearly 5 ppm in first 16 hrs and 10 ppm in 6 days

Resistance to full pond mixing – thermal stratification of 15 – 21° F in August

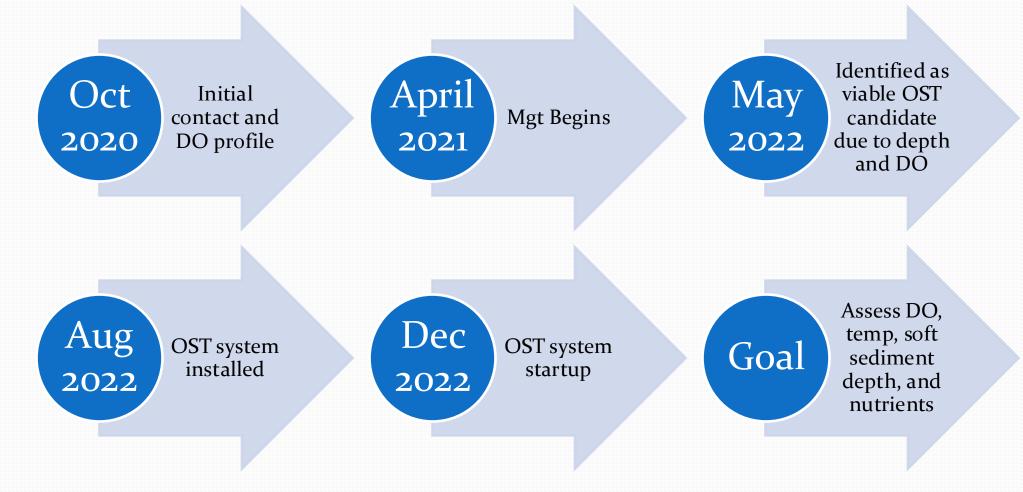
DO levels \geq 7 ppm and temp \leq 66° F in bottom 7' throughout project duration

> 84x - 100x more DO in June and 4x - 48x more DO in August
> Ability to maintain 7' - 14' of suitable trout habitat
> Able to maintain suitable DO in winter without impacting ice conditions
> No trout loss throughout duration of project


CASE STUDY 2: Aged Stormwater Pond

Lake and Pond Solutions LLC

Background

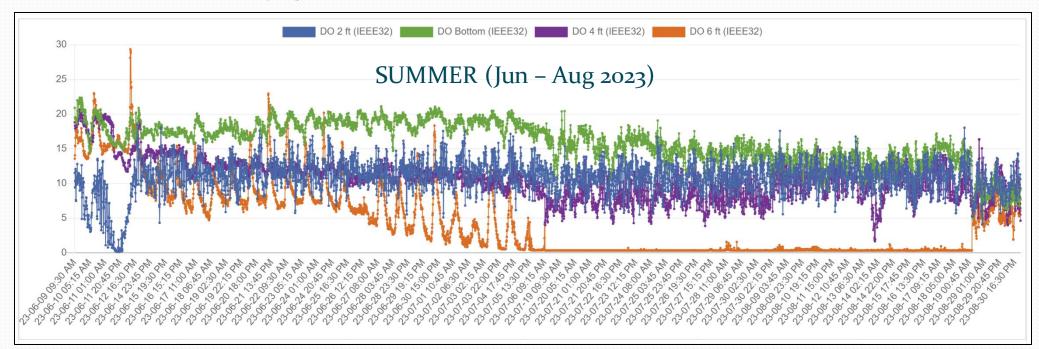

- Pond located in Racine County, Wisconsin
- Earthen stormwater pond built in the 1990's
- 1.75 acres with 17.4' max depth, 6.7' avg. depth

• Constant inflow on SW corner that brings in constant 5-15 gpm plus stormwater runoff

Project Timeline

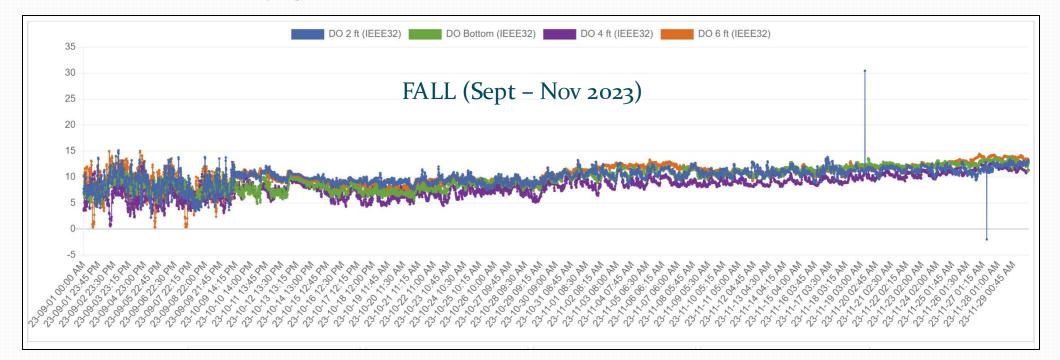
Lake and Pond Solutions LLC

Project Details


- OST system installed in deep basin
- Full DO/Temp profiles taken with YSI 550A meter or YSI DO200 meter

- Automated readings taken with series of probes at 17' 15', 13', and 11'
 - Measurements every 15 60 minutes
 - Connects to online dashboard
- Soft sediment measurements taken and water samples collected pre and post install

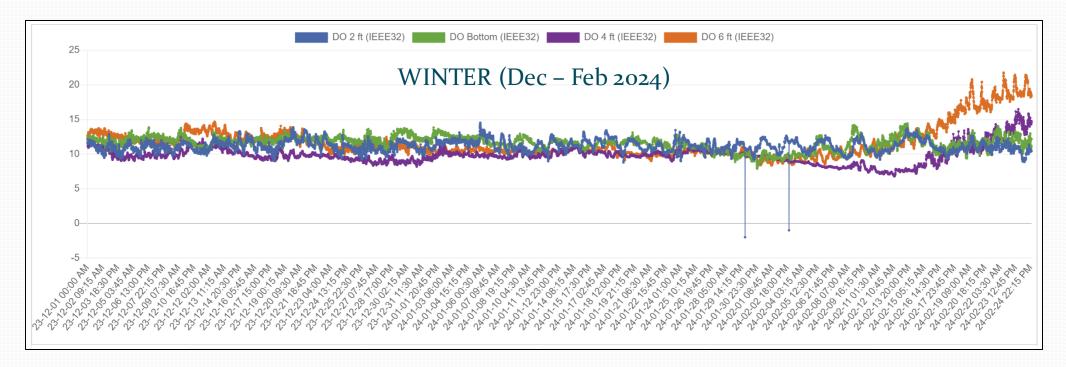
Dissolved Oxygen – Summer 2023



- Avg DO at 17' **15.97 ppm**
- Avg DO at 13' 10.73 ppm

- Avg DO at 15' 10.93 ppm
- Avg DO at 11' **4.53 ppm**

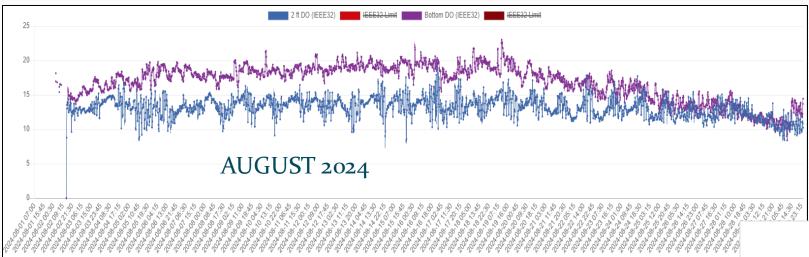
Dissolved Oxygen – Fall 2023



- Avg DO at 17' **9.83 ppm**
- Avg DO at 13' **8.43 ppm**

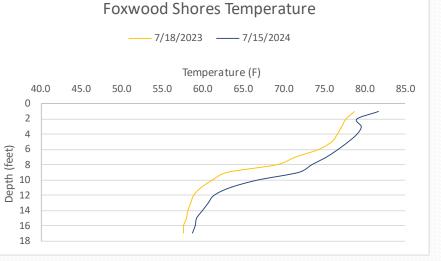
- Avg DO at 15' **10.15 ppm**
- Avg DO at 11' **10.41 ppm**

Dissolved Oxygen – Winter 2023/2024



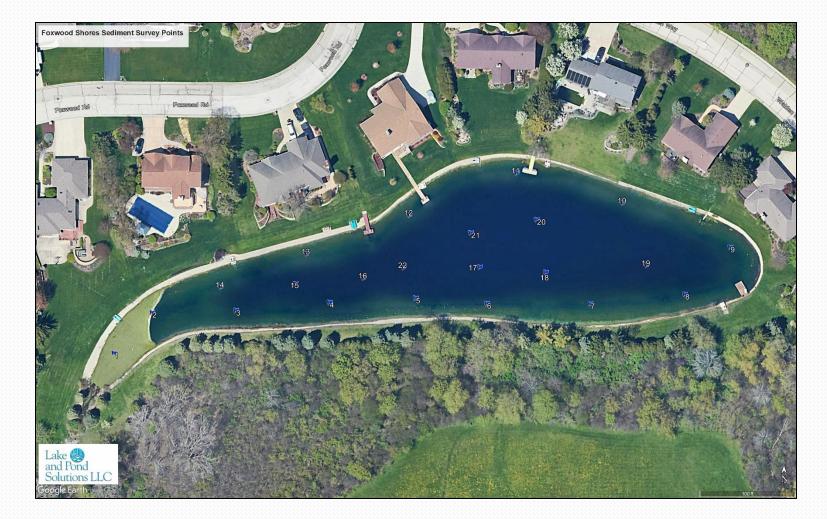
- Avg DO at 17' **11.62 ppm**
- Avg DO at 13' **9.87 ppm**

- Avg DO at 15' 11.19 ppm
- Avg DO at 11' **11.70 ppm**



Dissolved Oxygen – August 2024

Avg DO at 17' - 16.86 ppm
Avg DO at 15' - 13.16 ppm


- No mixing occurring mid-summer of 2023 or 2024
 - 21.2° 23.1° F difference
 - Avg DO in bottom 6' was 13.88 14.25 ppm

Soft Sediment

- 22-point grid established
- Graduated pole used to measure water and soft sediment depths
- Readings taken Aug
 2022 (pre), Oct
 2023, and Oct 2024

Soft Sediment

	то	TAL	IN	LET	REST OF POND		
Date	Avg Accumulation	Points w/ 1+' Accumulation	Avg Accumulation	Points w/ 1+' Accumulation	Avg Accumulation	Points w/ 1+' Accumulation	
8/19/2022		15	1.31	4	0.94	11	
10/16/2023	0.69	6	1.25	3	0.57	3	
10/1/2024	0.64	3	1.05	3	0.55	0	
REDUCTION	36.6%	80.0%	19.8%	25.0%	41.5%	100.0%	

- Separated inlet from rest of pond due to depth and constant inflow
- 36.6% reduction in total soft sediment accumulation (41.5% excl inlet)
 18/22 points (82%) had reductions while only 1/22 had an increase (inlet)
- 15 points with 1+' of accumulation pre-OST and only 3 points 2 years later (all in inlet)

Water Quality

- Samples collected over deep hole at 1' and 16' utilizing Van Dorn bottle
- Pre-OST samples taken late Aug of 2022
 - Filters show deep algal bloom nutrient release
- Post-OST samples taken in April and October of 2023 and 2024
- State certified lab analyzed RP, TP, NH3, NO2+NO3, TKN, and TN

Water Quality

AVERAGES (in PPM)	React P	Total P	NH3	NO2 + NO3 (N)	TKN	Total N
PRE - August 2022	0.0700	0.1100	1.150	0.00	2.30	2.30
POST - April 2023	0.0000	0.0120	0.000	1.50	0.44	1.94
POST - October 2023	0.0000	0.0420	0.635	0.16	1.70	1.86
POST - April 2024	0.0000	0.0270	0.033	0.85	0.68	1.52
POST - October 2024	0.0059	0.0264	0.504	0.22	1.56	1.78

BOTTOM (in PPM)	React P	Total P	NH3	NO2 + NO3 (N)	TKN	Total N
PRE - August 2022	0.1400	0.2200	2.300	0.00	4.10	4.10
POST - October 2024	0.0066	0.0302	0.756	0.24	2.10	2.34
% REDUCTION (Pre to Oct 2024)	95.29%	86.27%	67.13%	n/a - increase	48.78%	42.93%

Project Conclusions

DO averaging 9.53 – 15.88 ppm in bottom 6' throughout 22-month project

Resistance to full pond mixing – thermal stratification of 21° – 23° F in July

41% reduction in soft sediment with 95% of points decreasing or constant

Decreases of 92% in RP and 76% in TP – more pronounced at bottom

Decreases of 56% in NH3, 32% in TKN, and 23% in TN – more pronounced at bottom

Questions?

Lake and Pond Solutions LLC